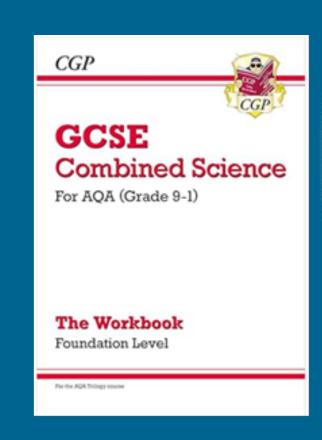
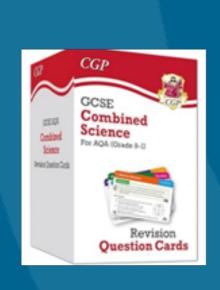
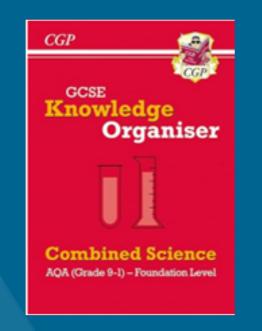
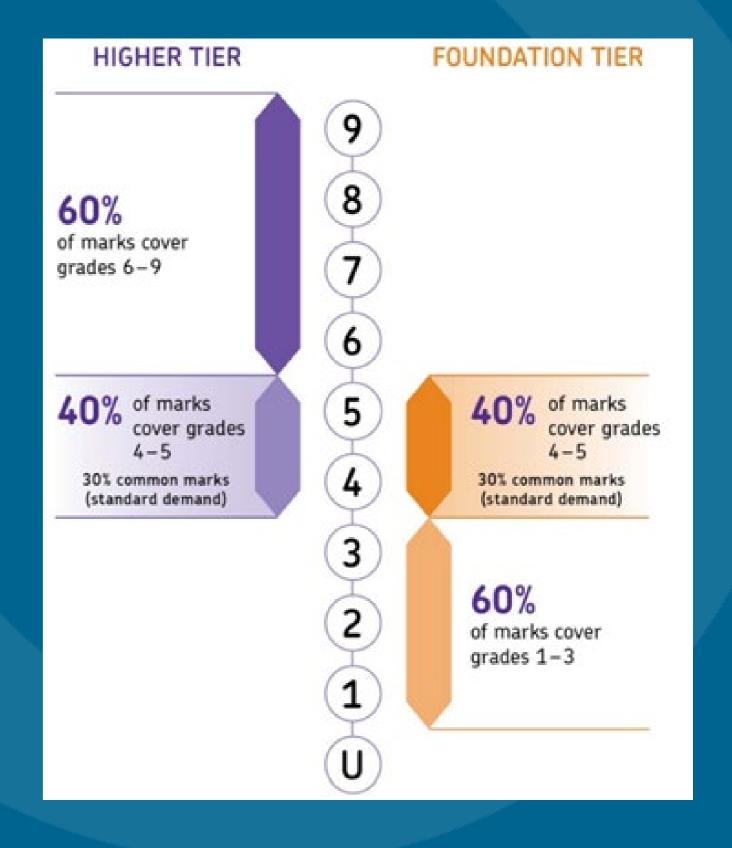

AQA COMBINED SCIENCE TRILOGY - BIOLOGY, CHEMISTRY & PHYSICS AQA GCSE BIOLOGY, AQA GCSE CHEMISTRY, AQA GCSE PHYSICS


IN COMBINED SCIENCE TRILOGY STUDENTS WILL SIT TWO EXAM PAPERS FOR EACH SUBJECT DISCIPLINE – PAPER 1 & PAPER 2.


STUDENTS CAN BE ENTERED FOR THE PAPERS AT HIGHER TIER LEVEL OR FOUNDATION TIER LEVEL



SPECIFICATIONS: CLICK HERE



COMBINED SCIENCE TRILOGY TOPICS

Biology

- 1. Cell biology
- 2. Organisation
- 3. Infection and response
- 4. Bioenergetics
- 5. Homeostasis and response
- 6. Inheritance, variation and evolution
- 7. Ecology

Chemistry

- 8. Atomic structure and the periodic table
- 9.Bonding, structure and the properties of matter
- 10. Quantitative chemistry
- 11. Chemical changes
- 12 Energy changes
- 13. The rate and extent of chemical change
- 14. Organic chemistry
- 15. Chemical analysis
- 16. Chemistry of the atmosphere
- 17. Using resources

Physics

- 18. Energy
- 19. Electricity
- 20. Particle model of
- matter
- 21. Atomic structure
- 22. Forces
- 23. Waves
- 24. Magnetism and
- electromagnetism

COMBINED SCIENCE TRILOGY ASSESSMENT TOPICS

Biology Paper 1

What's assessed

Biology topics 1-4: Cell Biology; Organisation; Infection and response; and Bioenergetics.

How it's assessed

- Written exam: 1 hour 15 minutes
- Foundation and Higher Tier
- 70 marks
- 16.7% of GCSE

Questions

Multiple choice, structured, closed short answer, and open response.

Biology Paper 2

What's assessed

Biology topics 5–7: Homeostasis and response; Inheritance, variation and evolution; and Ecology

How it's assessed

- Written exam: 1 hour 15 minutes
- Foundation and Higher Tier
- 70 marks
- 16.7% of GCSE

Questions

Multiple choice, structured, closed short answer, and open response.

Chemistry Paper 1

What's assessed

Chemistry topics 8–12: Atomic structure and the periodic table; Bonding, structure, and the properties of matter; Quantitative chemistry; Chemical changes; and Energy changes.

How it's assessed

- Written exam: 1 hour 15 minutes
- Foundation and Higher Tier
- 70 marks
- 16.7% of GCSE

Questions

Multiple choice, structured, closed short answer, and open response.

hemistry Paper 2

What's assessed

Chemistry topics 13–17: The rate and extent of chemical change; Organic chemistry; Chemical analysis; Chemistry of the atmosphere; and Using resources.

Questions in Paper 2 may draw on fundamental concepts and principles from Sections 5.1 to 5.3.

How it's assessed

- · Written exam: 1 hour 15 minutes
- Foundation and Higher Tier
- 70 marks
- 16.7% of GCSE

Questions

Multiple choice, structured, closed short answer, and open response.

Physics Paper 1

What's assessed

Physics topics 18–21: Energy; Electricity; Particle model of matter; and Atomic structure.

How it's assessed

- Written exam: 1 hour 15 minutes
- Foundation and Higher Tier
- 70 marks
- 16.7% of GCSE

Questions

Multiple choice, structured, closed short answer, and open response.

Physics Paper 2

What's assessed

Physics topics 22-24: Forces; Waves; and Magnetism and electromagnetism

How it's assessed

- Written exam: 1 hour 15 minutes
- Foundation and Higher Tier
- 70 marks
- 16.7% of GCSE

Questions

Multiple choice, structured, closed short answer, and open response.

Performance in all six exams will be combined to generate the final combined grades.

REQUIRED PRACTICAL FOR COMBINED TRILOGY

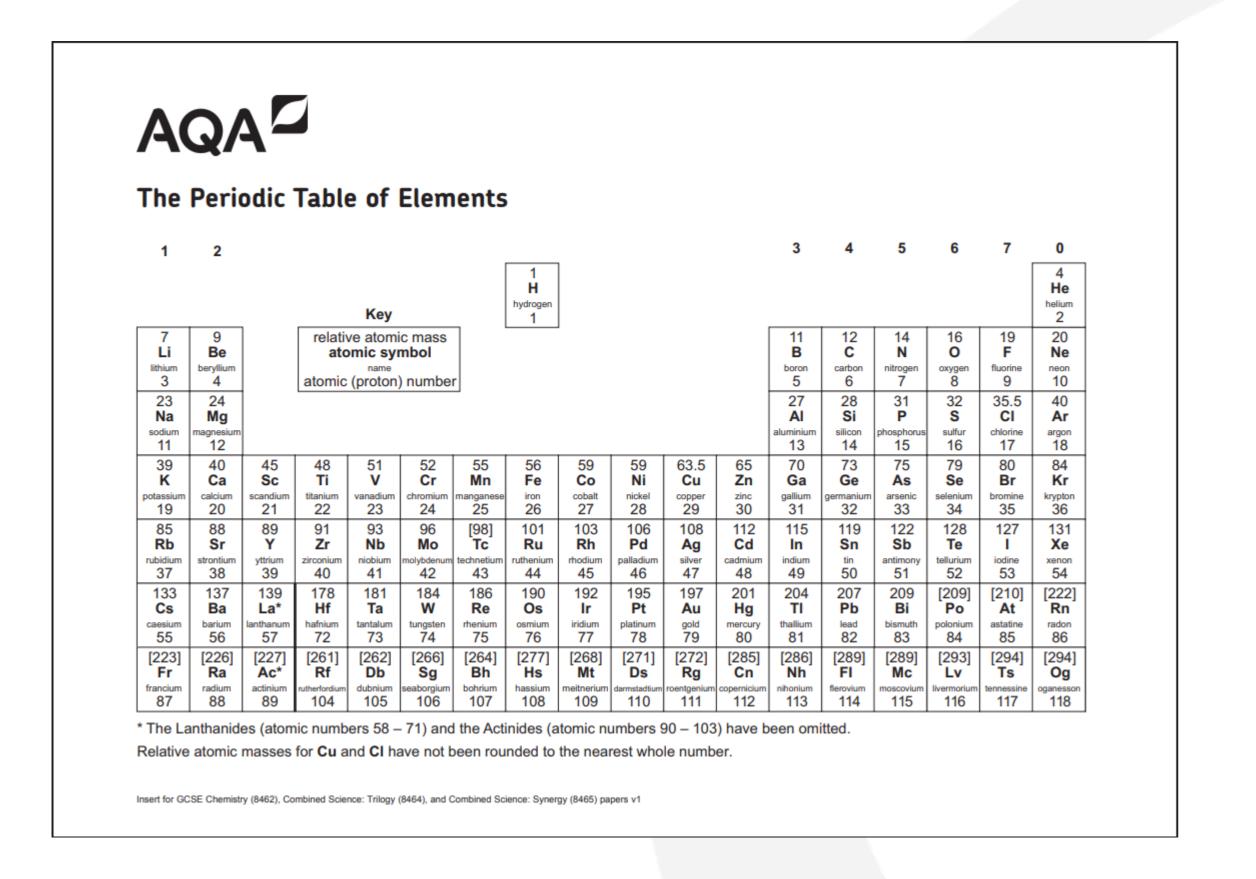
Required practical activity	Trilogy
Microscopy	✓
Osmosis	✓
Enzymes	✓
Food tests	✓
Photosynthesis	✓
Reaction time	✓
Field investigations	✓
Plant responses	X
Decay	X
Microbiology	X
Making salts	✓
Temperature changes	✓
Rates of reaction	✓
Chromatography	✓
Water purification	✓
Electrolysis	✓
Neutralisation	X
Identifying ions	X
Specific heat capacity	✓
Resistance	✓
I-V characteristics	✓
Density	✓

Force and extension	✓
Acceleration	✓
Waves	✓
Radiation and absorption	✓
Thermal insulation	X
Light	X

X Not required for combined trilogy

Revision resources are available from class teachers to help to revise the required practicals.

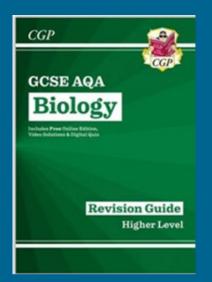
Required practical activity	Trilogy	Biology	Chemistry	Physics	Do you feel confident enough	to answer any question on the
Microscopy	✓	·			BIOLOGY required practical a	
Osmosis	·	V			improve your grade?	3
Enzymes	~	V			p.oro you. g.uuo.	
Food tests	·	·				
Photosynthesis	~	V			Which practical can	Which practical can
Reaction time	~	V			you expect to be asked	you expect to be asked
Field investigations	✓	✓			about on paper 1?	about on paper 2?
Plant responses		·			about on paper 1:	about on paper 2:
Decay		✓				
Microbiology		·				
Microscopy: <u>click</u>	here				while you watch the video annot the matchin	questions on the
Microscopy: cli	here				watch the	the set of exam questions on the practical and

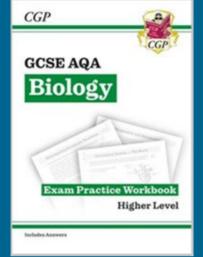

	Trilogy	Biology	Chemistry	Physics	5 () () , , ,			
Making salts	1		1		Do you feel confident enough			
Temperature changes	1	_	1	_	CHEMISTRY required practica	al and ga	in marks which could	
Rates of reaction	1		·	\vdash	improve your grade?			
Chromatography	1		1					
Water purification	·		~		Which practical can	\M/h	nich practical can	
Electrolysis	-		~				you expect to be asked	
Neutralisation	1		✓		about on paper 1?	1 -	about on paper 2?	
Identifying ions	1		✓		about on paper 1:	abt	out on paper 2:	
Making pure o								
Making pure o					While you		Then complete	
Temperature (changes:	click h			While you watch the		Then complete	
	changes:	click h				tate	the set of exam	
Temperature (changes:	click h			watch the video annot		the set of exam questions on the	
Temperature (changes:	click h			watch the video annot the matchin	ng	the set of exam questions on the practical and	
Temperature of	changes:	click h			watch the video annot the matchin worksheet v	ng	the set of exam questions on the practical and check your	
Temperature of	changes: ion: <u>click</u> bhy: <u>click</u>	click here			watch the video annot the matchin	ng	the set of exam questions on the practical and check your answers against	
Temperature of Rates of react	changes: ion: <u>click</u> bhy: <u>click</u>	click here			watch the video annot the matchin worksheet v	ng	the set of exam questions on the practical and check your	

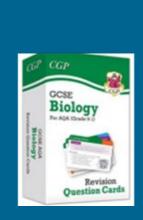
	Trilogy	Biology	Chemistry	Physics	
Specific heat capacity	~			~	Do you feel confident enough to answer any question on the
Resistance	~			~	PHYSICS required practical and gain marks which could
I-V characteristics	~			~	improve your grade?
Density	~			✓	
Force and extension	✓			✓	Which practical can Which practical can
Acceleration	~			✓	you expect to be asked you expect to be asked
Waves	✓			✓	about on paper 1? about on paper 2?
Radiation and absorption	~			✓	about on paper 2:
Thermal insulation				✓	
Light				✓	
Specific heat ca	apacity:	click he	ere	Ra	diation and absorption: <u>click here</u>
Specific heat ca]	diation and absorption: click here While you watch the Then complet
	stance: o	click her			wes: click here While you watch the video annotate the matching Then complete the set of exa questions on
Measuring resis	stance: c	click her k here			wes: click here White you watch the video annotate Then complete the set of examples

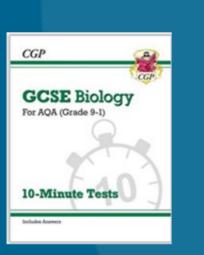
PERIODIC TABLES AND EQUATION SHEETS

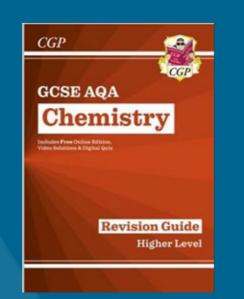
Students will be provided with a periodic table in the chemistry exams and an equation sheet in the physics exams. There is no equation sheet for biology.

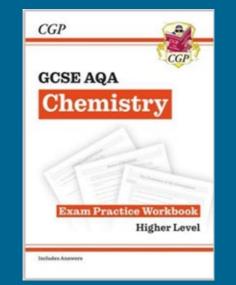

AQA 💆	
Physics Equations Sheet GCSE Combined Science: Trilogy (8 and GCSE Combined Science: Syn (8465)	
FOR USE IN JUNE 2024 ONLY	
HT = Higher Tier only equations	
kinetic energy = 0.5 × mass × (speed) ²	$E_k = \frac{1}{2} m v^2$
elastic potential energy = 0.5 × spring constant × (extension) ²	$E_{\sigma} = \frac{1}{2} k e^2$
gravitational potential energy = mass × gravitational field strength × height	$E_p = m g h$
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m \ c \ \Delta \theta$
power = energy transferred time	$P = \frac{E}{t}$
power = work done time	$P = \frac{W}{t}$
efficiency = useful output energy transfer total input energy transfer	
efficiency = useful power output total power input	
charge flow = current × time	Q=It
potential difference = current × resistance	V = IR
power = potential difference × current	P = VI
power = (current) ² × resistance	$P = I^2 R$
energy transferred = power × time	E = P t
	Turn over ▶

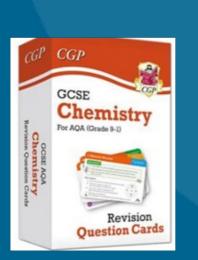

_		
L	energy transferred = charge flow × potential difference	E = QV
p	otential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_p I_p = V_s I_s$
L	density = $\frac{\text{mass}}{\text{volume}}$	$\rho = \frac{m}{V}$
	thermal energy for a change of state = mass × specific latent heat	E = m L
L	weight = mass × gravitational field strength	W = m g
L	work done = force × distance (along the line of action of the force)	W = F s
L	force = spring constant × extension	F = k e
	distance travelled = speed × time	s = v t
	acceleration = $\frac{\text{change in velocity}}{\text{time taken}}$	$a = \frac{\Delta v}{t}$
	(final velocity)² – (initial velocity)² = 2 × acceleration × distance	$v^2 - u^2 = 2 a s$
	resultant force = mass × acceleration	F=ma
	momentum = mass × velocity	p = m v
	$period = \frac{1}{frequency}$	$T = \frac{1}{f}$
	wave speed = frequency × wavelength	$v = f \lambda$
fo	orce on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F=BII

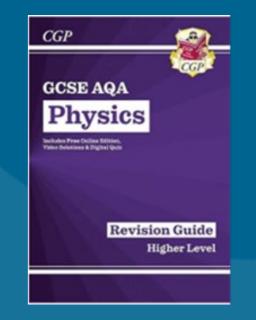

IN SEPARATE GCSE SCIENCE QUALIFICATIONS (TRIPLE SCIENCE) EACH SUBJECT DISCIPLINE WILL HAVE TWO PAPERS (PAPER 1 & PAPER 2)

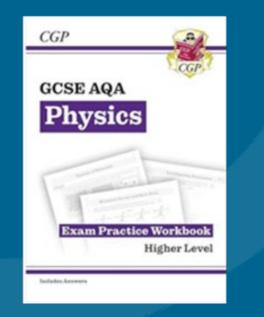


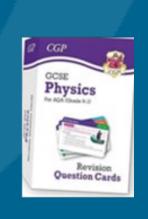

SPECIFICATIONS CAN BE FOUND ON THE AQA WEBSITE.











ASSESSMENT TOPICS GCSE BIOLOGY

Paper 1

What's assessed

Topics 1-4: Cell biology; Organisation; Infection and response; and Bioenergetics.

How it's assessed

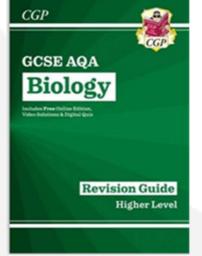
- Written exam: 1 hour 45 minutes
- Foundation and Higher Tier
- 100 marks
- 50 % of GCSE

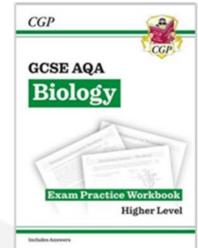
Questions

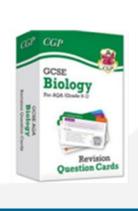
Multiple choice, structured, closed short answer and open response.

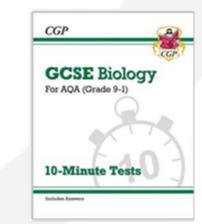
Paper 2

What's assessed


Topics 5–7: Homeostasis and response; Inheritance, variation and evolution; and Ecology.


How it's assessed


- Written exam: 1 hour 45 minutes
- Foundation and Higher Tier
- 100 marks
- 50 % of GCSE


Questions

Multiple choice, structured, closed short answer and open response.

ASSESSMENT TOPICS GCSE CHEMISTRY

Paper 1:

What's assessed

Topics 1–5: Atomic structure and the periodic table; Bonding, structure, and the properties of matter; Quantitative chemistry, Chemical changes; and Energy changes.

How it's assessed

- Written exam: 1 hour 45 minutes
- Foundation and Higher Tier
- 100 marks
- 50% of GCSE

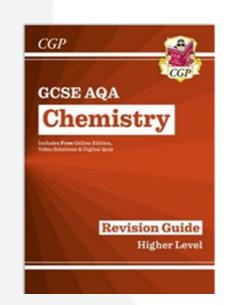
Questions

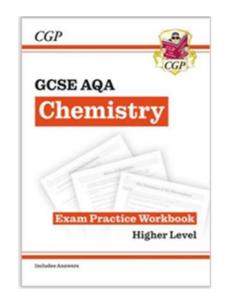
Multiple choice, structured, closed short answer and open response.

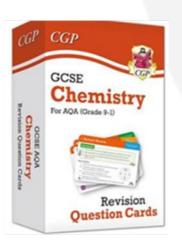
Paper 2:

What's assessed

Topics 6–10: The rate and extent of chemical change; Organic chemistry; Chemical analysis, Chemistry of the atmosphere; and Using resources.


Questions in Paper 2 may draw on fundamental concepts and principles from sections 4.1 to 4.3.


How it's assessed


- Written exam: 1 hour 45 minutes
- Foundation and Higher Tier
- 100 marks
- 50% of GCSE

Questions

Multiple choice, structured, closed short answer and open response.

ASSESSMENT TOPICS GCSE PHYSICS

Paper 1:

What's assessed

Topics 1-4: Energy; Electricity; Particle model of matter; and Atomic structure.

How it's assessed

- Written exam: 1 hour 45 minutes
- Foundation and Higher Tier
- 100 marks
- 50% of GCSE

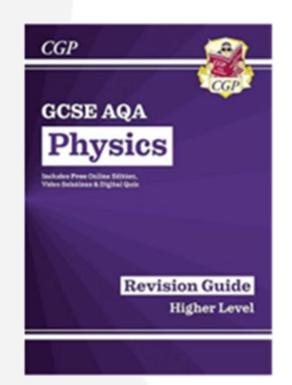
Questions

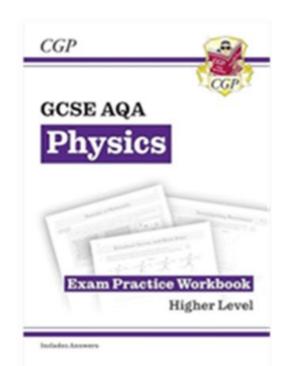
Multiple choice, structured, closed short answer and open response.

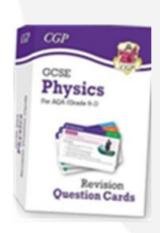
Paper 2:

What's assessed

Topics 5-8: Forces; Waves; Magnetism and electromagnetism; and Space physics.


Questions in paper 2 may draw on an understanding of energy changes and transfers due to heating, mechanical and electrical work and the concept of energy conservation from Energy (page 17) and Electricity (page 23).


How it's assessed


- Written exam: 1 hour 45 minutes
- Foundation and Higher Tier
- 100 marks
- 50% of GCSE

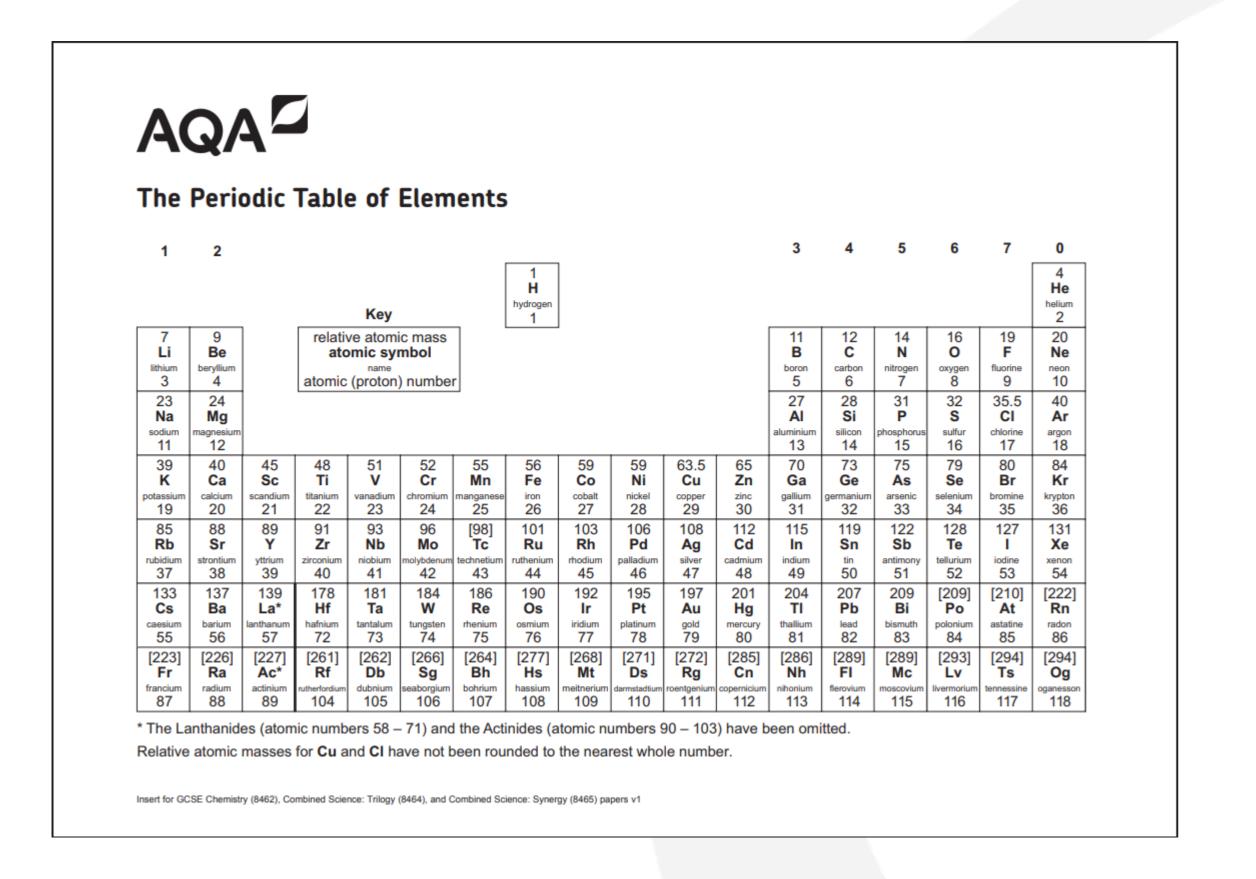
Questions

Multiple choice, structured, closed short answer and open response.

REQUIRED PRACTICAL FOR TRIPLE SCIENCE QUALIFICATIONS

Required practical activity	Trilogy	Biology	Chemistry	Physics
Microscopy	✓	~		
Osmosis	~	1		
Enzymes	~	~		
Food tests	~	V		
Photosynthesis	~	~		
Reaction time	~	✓		
Field investigations	~	V		
Plant responses		V		
Decay		~		
Microbiology		~		

	Trilogy	Biology	Chemistry	Physics
Specific heat capacity	✓			~
Resistance	~			~
I-V characteristics	~			~
Density	~			~
Force and extension	·			✓
Acceleration	·			~
Waves	·			~
Radiation and absorption	·			~
Thermal insulation				~
Light				1


	Trilogy	Biology	Chemistry	Physics
Making salts	_		V	
Temperature changes	~		~	
Rates of reaction	~		~	
Chromatography	~		·	
Water purification	~		~	
Electrolysis	~		~	
Neutralisation			~	
Identifying ions			✓	

Revision resources are available from class teachers to help to revise the required practicals.

PERIODIC TABLES AND EQUATION SHEETS

Students will be provided with a periodic table in the chemistry exams and an equation sheet in the physics exams. There is no equation sheet for biology.

AQA 💆	
Physics Equations Sheet GCSE Combined Science: Trilogy (8 and GCSE Combined Science: Syn (8465)	
FOR USE IN JUNE 2024 ONLY	
HT = Higher Tier only equations	
kinetic energy = 0.5 × mass × (speed) ²	$E_k = \frac{1}{2} m v^2$
elastic potential energy = 0.5 × spring constant × (extension) ²	$E_{\sigma} = \frac{1}{2} k e^2$
gravitational potential energy = mass × gravitational field strength × height	$E_p = m g h$
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m \ c \ \Delta \theta$
power = energy transferred time	$P = \frac{E}{t}$
power = work done time	$P = \frac{W}{t}$
efficiency = useful output energy transfer total input energy transfer	
efficiency = useful power output total power input	
charge flow = current × time	Q=It
potential difference = current × resistance	V = IR
power = potential difference × current	P = VI
power = (current) ² × resistance	$P = I^2 R$
energy transferred = power × time	E = P t
	Turn over ▶

_		
L	energy transferred = charge flow × potential difference	E = QV
p	otential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_p I_p = V_s I_s$
L	density = $\frac{\text{mass}}{\text{volume}}$	$\rho = \frac{m}{V}$
	thermal energy for a change of state = mass × specific latent heat	E = m L
L	weight = mass × gravitational field strength	W = m g
L	work done = force × distance (along the line of action of the force)	W = F s
L	force = spring constant × extension	F = k e
	distance travelled = speed × time	s = v t
	acceleration = $\frac{\text{change in velocity}}{\text{time taken}}$	$a = \frac{\Delta v}{t}$
	(final velocity)² – (initial velocity)² = 2 × acceleration × distance	$v^2 - u^2 = 2 a s$
	resultant force = mass × acceleration	F=ma
	momentum = mass × velocity	p = m v
	$period = \frac{1}{frequency}$	$T = \frac{1}{f}$
	wave speed = frequency × wavelength	$v = f \lambda$
fo	orce on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F=BII